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Notations

Primes: the set of all prime numbers

F : a number field ⊇ OF : the ring of integers

∆F : the absolute value of the discriminant of F

V(F )non: the set of nonarchimedean places of F

V(F )arc: the set of archimedean places of F

V(F )
def
= V(F )non

∪
V(F )arc

For v ∈ V(F ), write Fv for the completion of F at v

For v ∈ V(F )non, write pv ⊆ OF for the prime ideal corr. to v
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Let v ∈ V(F )non. Write ordv : F× ↠ Z for the order def’d by v.
Then for any x ∈ F , we shall write

|x|v
def
= ♯(OF /pv)

−ordv(x).

Let v ∈ V(F )arc. Write σv : F ↪→ C for the embed. det’d, up to
complex conjugation, by v. Then for any x ∈ F , we shall write

|x|v
def
= |σv(x)|[Fv :R]

C .

Note: (Product formula) For α ∈ F×, it holds that∏
v∈V(F )

|α|v = 1.

For an elliptic curve E /a field, write j(E) for the j-invariant of E
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Log-volume estimates for Θ-pilot objects (cf. [IUTchIII], Cor 3.12)

Theorem

Write
−| log(Θ)| ∈ R ∪ {∞}

for the (process.-normalized, mono-an.) log-volume of the “holomorphic
hull” of the union of the possible images of a Θ-pilot object, rel. to the
relevant Kum. isoms, in the multira’l rep’n of [IUTchIII], Thm 3.11, (i),
which we regard as sub. to (Ind1), (Ind2), (Ind3);

−| log(q)| ∈ R

for the (process.-normalized, mono-an.) log-volume of the image of a
q-pilot object, rel. to the relevant Kum. isoms, in the multirad’l rep’n.

Then it holds that −| log(Θ)| ∈ R, and −| log(Θ)| ≥ −| log(q)|.
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Results in [IUTchIV]

For λ ∈ Q \ {0, 1},

Aλ: the elliptic curve /Q(λ) def’d by “y2 = x(x− 1)(x− λ)”

Fλ
def
= Q(λ,

√
−1, Aλ[3 · 5](Q))

⇒ Eλ
def
= Aλ ×Q(λ) Fλ has at most split multipl. red. at ∀ ∈ V(Fλ)

qλ: the arithmetic divisor det’d by the q-parameters of Eλ/Fλ

fλ: the “reduced” arithmetic divisor det’d by qλ

dλ: the arithmetic divisor det’d by the different of Fλ/Q
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Theorem (Vojta Conj. — in the case of P1 \ {0, 1,∞} — for “K”)

Let d ∈ Z>0, ϵ ∈ R>0 ∩ R≤1,

K ⊆ Q \ {0, 1}: a compactly bounded subset whose “support” ∋ 2, ∞.

Then ∃B(d, ϵ,K) ∈ R>0 — that depends only on d, ϵ, and K — s.t.

the function on K≤d def
= {λ ∈ K | [Q(λ) : Q] ≤ d} given by

λ 7→ 1
6 · deg(qλ)− (1 + ϵ) · (deg(dλ) + deg(fλ))

is bounded by B(d, ϵ,K).

Proof: By applying

the finiteness of {λ ∈ K≤d | deg(qλ) ≤ γ} (γ ∈ R>0)

(cf. Northcott’s theorem),
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♯{j(“arithmetic” elliptic curve over a field of char. zero)} = 4

(cf. Takeuchi’s list),

the prime number theorem,

the theory of Galois actions on torsion points of elliptic curves

(cf. [GenEll]),

we conclude that for all but finitely many λ ∈ K≤d, there exists a

prime number lλ such that

(i) ∃an initial Θ-data (Q/Fλ, Eλ, lλ, . . . ) s.t. Eλ has good red.

at every ∈ V(Fλ)
good ∩ V(Fλ)

non that does not divide 2lλ

(In the following, we shall write

qbadλ : the arithmetic divisor det’d by “restricting qλ to Vbad
mod”.)
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(ii) 1
6 · deg(qbadλ ) ≤ (1 + 20dλ

lλ
) · (deg(dλ) + deg(fλ)) + 20 · δλ · lλ,

where dλ := [Q(λ) : Q], δλ := 212 · 33 · 5 · dλ (cf. (i); “Cor 3.12”)

(iii) ordlλ(q□) < deg(qλ)
1/2, where V(Fλ) ∋ □|lλ

(iv) deg(qλ)
1/2 ≤ lλ ≤ 10 · δ · deg(qλ)1/2 · log(2 · δ · deg(qλ))

where δ := 212 · 33 · 5 · d

Then it follows from (i), (iii) [cf. also the “compactness” of K] that

λ 7→ 1
6 deg(qλ)−

1
6 deg(q

bad
λ )− deg(qλ)

1/2 log(2δ deg(qλ))

is bounded. On the other hand, it follows from (ii), (iv) that

Arata Minamide (RIMS, Kyoto University) Explicits Estimates in IUTch September 7, 2021 8 / 34



(ii) 1
6 · deg(qbadλ ) ≤ (1 + 20dλ

lλ
) · (deg(dλ) + deg(fλ)) + 20 · δλ · lλ,

where dλ := [Q(λ) : Q], δλ := 212 · 33 · 5 · dλ (cf. (i); “Cor 3.12”)

(iii) ordlλ(q□) < deg(qλ)
1/2, where V(Fλ) ∋ □|lλ

(iv) deg(qλ)
1/2 ≤ lλ ≤ 10 · δ · deg(qλ)1/2 · log(2 · δ · deg(qλ))

where δ := 212 · 33 · 5 · d

Then it follows from (i), (iii) [cf. also the “compactness” of K] that

λ 7→ 1
6 deg(qλ)−

1
6 deg(q

bad
λ )− deg(qλ)

1/2 log(2δ deg(qλ))

is bounded. On the other hand, it follows from (ii), (iv) that

Arata Minamide (RIMS, Kyoto University) Explicits Estimates in IUTch September 7, 2021 8 / 34



1
6 deg(q

bad
λ ) ≤ (1 + δ · deg(qλ)−1/2)(deg(dλ) + deg(fλ)) +

200δ2 · deg(qλ)1/2 log(2δ deg(qλ)).

In particular, these two displays imply that λ 7→

(1− 2
5
(60δ)2 log(2δ deg(qλ))

deg(qλ)1/2
)16 deg(qλ)− (1 + δ

deg(qλ)1/2
)(deg(dλ) + deg(fλ))

is bounded. By enlarging our “exceptional set”, we conclude that

λ 7→ 1
6 · deg(qλ)− (1 + ϵ) · (deg(dλ) + deg(fλ))

is bounded. This completes the proof of Theorem.

Then, by applying the theory of noncritical Belyi maps, we obtain

(∗): the “version with K removed” of Theorem (cf. [GenEll]).
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Theorem (Corollary of (∗) — ABC Conjecture for number fields)

Let d ∈ Z>0, ϵ ∈ R>0 ∩ R≤1.

Then ∃C(d, ϵ) ∈ R>0 — that depends only on d and ϵ — s.t. for

• F : a number field — where d = [F : Q]

• (a, b, c) : a triple of elements ∈ F× — where a+ b+ c = 0

we have
HF (a, b, c) < C(d, ϵ) · (∆F · radF (a, b, c))1+ϵ

— where
HF (a, b, c)

def
=

∏
v∈V(F )max{|a|v, |b|v, |c|v},

radF (a, b, c)
def
=

∏
{v∈V(F )non|♯{|a|v ,|b|v ,|c|v}≥2} ♯(OF /pv).

Note: We do not know the constant “C(d, ϵ)” explicitly.

For instance, it is hard to compute noncritical Belyi maps explicitly.
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Computations concerning (ii)

For γ ∈ R, we shall write ⌊γ⌋ (resp. ⌈γ⌉) for the largest integer

≤ γ (resp. the smallest integer ≥ γ).

{ki}i∈I : a finite set of p-adic local fields (Oki : the ring of integers)

ei (resp. di): the abs. ram. index (resp. the order of an gen. of δki)

ai
def
=

{
1
ei
⌈ ei
p−2⌉ (p > 2)

2 (p = 2)
bi

def
= ⌊ log(p·ei/(p−1))

log(p) ⌋ − 1
ei

aI
def
=

∑
i∈I

ai, bI
def
=

∑
i∈I

bi, dI
def
=

∑
i∈I

di

µlog
kI

: the (nor’d) log-vol. on kI
def
= ⊗i∈Iki s.t. µlog

kI
(⊗i∈IOki) = 0
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Lemma

For λ ∈ 1
ei
Z, write pλOki for the fractional ideal generated by any

element x ∈ ki s.t. ord(x) = λ. Let

ϕ : Qp ⊗Zp

⊗
i∈I

logp(O×
ki
)

∼→ Qp ⊗Zp

⊗
i∈I

logp(O×
ki
)

be an automorphism of the finite dimensional Qp-vector space that

induces an automorphism of the submodule
⊗

i∈I logp(O
×
ki
).

(i) Write I∗
def
= {i ∈ I | ei > p− 2}. For any λ ∈ 1

ei0
Z, i0 ∈ I,

ϕ(pλ(⊗i∈IOki)
∼)

∪
p⌊λ⌋

⊗
i∈I

1
2p logp(O

×
ki
)

⊆ p⌊λ−dI−aI⌋
⊗
i∈I

logp(O×
ki
) ⊆ p⌊λ−dI−aI⌋−bI (⊗i∈IOki)

∼.
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Moreover, we have

µlog
kI

(p⌊λ−dI−aI⌋−bI (⊗i∈IOki)
∼)

≤ (−λ+ dI + 1) log(p) +
∑
i∈I∗

(3 + log(ei)).

(ii) Suppose that p > 2 and ei = 1 (∀i ∈ I). Then

ϕ((⊗i∈IOki)
∼) ⊆

⊗
i∈I

1
2p logp(O

×
ki
) = (⊗i∈IOki)

∼.

Moreover, we have

µlog
kI

((⊗i∈IOki)
∼) = 0.
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In the following discussion, for simplicity, write

(F/F, E, l, . . . )
def
= (Q/Fλ, Eλ, lλ, . . . ).

(⇒ K = F (E[l]) ⊇ F ⊇ Fmod: the field of moduli of E)

dmod
def
= [Fmod : Q] ≥ emod

def
= the max. ram. index of Fmod/Q

d∗mod
def
= 212 · 33 · 5 · dmod ≥ e∗mod

def
= 212 · 33 · 5 · emod

Vnon
Q

def
= V(Q)non ⊇ Vdst

Q
def
= {vQ ∈ Vnon

Q | vQ ramifies in K}

Let us compute an upper bound for the

(process.-normalized, mono-an.) log-volume of the “holomorphic
hull” of the union of the possible images of a Θ-pilot object, rel.
to the relevant Kum. isoms, in the multira’l rep’n of [IUTchIII],
Thm 3.11, (i), which we regard as sub. to (Ind1), (Ind2), (Ind3)
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(A) Let vQ ∈ Vdst
Q . Fix j (∈ {1, 2, . . . , l⋇}) and the collection

{vi}i∈S±j+1

of [not necessarily distinct] elements of V(Fmod)vQ . Write vi ∈ V
∼→ V(Fmod) for the elem’t corr. to vi.

Then, by applying Lem, (i),

we obtain an upper bound on the component of the log-volume in

question corresponding to the tensor product of the Q-spans of the

log-shells associated to the collection {vi}i∈S±j+1
as follows:

(−λ+ dI + 1) log(pvQ) + 4(j + 1)ιvQ log(e
∗
mod · l)

— where λ =

{
j2

2l ord(qvj ) (vj ∈ Vbad)

0 (vj ∈ Vgood)
ιvQ =

{
1 (pvQ ≤ e∗modl)

0 (pvQ > e∗modl)
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After computing a “weighted average upper bound”, i.e.,

( 1
[Fmod:Q])

j+1
∑

v0,... ,vj∈V(Fmod)vQ

∏
0≤i≤j

[(Fmod)vi : QvQ ](−)

and then a “procession-normalized upper bound”, i.e.,

1
l⋇

∑
1≤j≤l⋇

(−)

for each vQ ∈ VQ, by summing over vQ ∈ VQ these estimates, we

obtain an upper bound on −| log(Θ)| as follows:

l+1
4

{
(1 + 12dmod

l ) · (deg(dλ) + deg(fλ)) + 10 · e∗mod · l

−1
6 · (1− 12

l2
) · log(qbadλ )

}
− 1

2l · deg(q
bad
λ )
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On the other hand, since −| log(Θ)| ≥ −| log(q)| = − 1
2l · deg(q

bad
λ ),

we conclude that

1
6 · (1− 12

l2
) · deg(qbadλ ) ≤

(1 + 12dmod
l ) · (deg(dλ) + deg(fλ)) + 10 · e∗mod · l,

hence that

1
6 · deg(qbadλ ) ≤ (1 + 20dmod

l ) · (deg(dλ) + deg(fλ)) + 20 · d∗mod · l.
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Goal of this joint work:

Under certain conditions, we prove (∗) directly
[i.e., without applying the theory of noncritical Belyi maps] to compute

the constant “C(d, ϵ)” explicitly.

Technical Difficulties of Explicit Computations

(i) We cannot use the compactness of “K” at the place 2

⇒ We develop the theory of étale theta functions so that

it functions properly at the place 2

(ii) We cannot use the compactness of “K” at the place ∞

⇒ By restricting our attention to special number fields, we

“bound” the archimedean portion of the “height” of the

elliptic curve Eλ
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Étale Theta Functions

p, l: distinct prime numbers — where l ≥ 5

k: a p-adic local field ⊇ Ok: the ring of integers

X: an elliptic curve /k which has split multipl. red. /Ok

q ∈ Ok: the q-parameter of X

X log def
= (X, {o} ⊆ X): the smooth log curve /k assoc. to X

In the following, we assume that

√
−1 ∈ k

X[2l](k) = X[2l](k)

[X log/{±1}] is a k-core
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Now we have the following sequence of log tempered coverings:

Ÿ log µ2−−−−→ Y log l·Z−−−−→ X log Fl−−−−→ X log

— where

Y log → X log → X log is det’d by the [graph-theoretic] universal
covering of the dual graph of the special fiber of X log. Write

Z def
= Gal(Y log/X log) (∼= Z).

X log → X log corresponds to l · Z ⊆ Z. Write

Fl
def
= Gal(X log/X log) (∼= Fl).

Ÿ log → Y log is the double covering det’d by “u = ü2”.

Arata Minamide (RIMS, Kyoto University) Explicits Estimates in IUTch September 7, 2021 21 / 34



Special fibers
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Write: For a curve (−) over k,

Ver(−): the set of irreducible components of the special fiber of (−)

• First, we recall the def’n of evaluation points on Ÿ log.

We fix a cusp of X log and refer to the zero cusp X log.

⇒ X admits a str. of elliptic curve whose origin is the zero cusp.

0X ∈ Ver(X log): the irreducible comp. which contain the “origin”

Then we fix a lift. ∃ ∈ Ver(Y log) of 0X ∈ Ver(X log) and write

0Y ∈ Ver(Y log).

0Ÿ ∈ Ver(Ÿ log): the irreducible comp. lying over 0Y ∈ Ver(Ÿ log)
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We fix a cusp of X log and refer to the zero cusp X log.

⇒ X admits a str. of elliptic curve whose origin is the zero cusp.

0X ∈ Ver(X log): the irreducible comp. which contain the “origin”

Then we fix a lift. ∃ ∈ Ver(Y log) of 0X ∈ Ver(X log) and write

0Y ∈ Ver(Y log).
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Arata Minamide (RIMS, Kyoto University) Explicits Estimates in IUTch September 7, 2021 23 / 34



Write: For a curve (−) over k,

Ver(−): the set of irreducible components of the special fiber of (−)

• First, we recall the def’n of evaluation points on Ÿ log.
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0Ÿ ∈ Ver(Ÿ log): the irreducible comp. lying over 0Y ∈ Ver(Ÿ log)
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Note: Since Ver(Y log) is a Z-torsor, we obtain a labeling

Z ∼→ Ver(Y log)
∼→ Ver(Ÿ log).

Assume: p ̸= 2

µ− ∈ X(k): the 2-torsion point — not equal to the origin — whose
closure intersects 0X ∈ Ver(X log)

µY
− ∈ Y (k): a ∃!lift. of µ− whose closure intersects 0Y ∈ Ver(Y log)

ξYj ∈ Y (k): the image of µY
− by the action of j ∈ Z

Definition

an evaluation point of Ÿ log labeled by j ∈ Z

def⇔ a lifting ∈ Ÿ (k) of ξYj ∈ Y (k)
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def⇔ a lifting ∈ Ÿ (k) of ξYj ∈ Y (k)

Arata Minamide (RIMS, Kyoto University) Explicits Estimates in IUTch September 7, 2021 24 / 34



Note: Since Ver(Y log) is a Z-torsor, we obtain a labeling

Z ∼→ Ver(Y log)
∼→ Ver(Ÿ log).
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• Next, we recall the def’n of the theta function Θ̈.

The function

Θ̈(ü)
def
= q−

1
8 ·

∑
n∈Z

(−1)n · q
1
2 (n+

1
2)

2

· ü2n+1

on Ÿ log extends uniquely to a meromorphic function Θ̈ on the stable
model of Ÿ , and satisfies the following property:

Θ̈(ξj)
−1 = ±Θ̈(ξ0)

−1 · q
j2

2 .

— where ξj ∈ Ÿ (k) is an evaluation point labeled by j ∈ Z.

Definition

Write
Θ̈st

def
= Θ̈(ξ0)

−1 · Θ̈

and refer to Θ̈st as a theta function of µ2-standard type.
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We want to develop the theory of Θ functions in the case of p = 2.

⇒ In this work, instead of “2-torsion points”, we consider

6-torsion points of X(k).

Lemma (Well-definedness of the notion of “µ6-standard type”)

n ∈ Z>0: an even integer

L: an alg. cl. ch. zero fld. ⊇ µ×
2n: the set of pr. 2n-th roots of unity

Γ− (resp. Γ−): the group of ♯ = 2 which acts on µ×
2n as follows:

ζ 7→ −ζ (resp. ζ 7→ ζ−1)

Then the action Γ− × Γ− on µ×
2n is transitive ⇔ n ∈ {2, 4, 6}

Note: Θ̈(−ü) = −Θ̈(ü); Θ̈(ü−1) = −Θ̈(ü); Θ̈(ζ12) is unit at
∀bad places.
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Heights

First, we recall the notion of the Weil height of an algebraic number.

Definition

Let F be a number field; α ∈ F . Then for □ ∈ {non, arc}, we shall write

h□(α)
def
= 1

[F :Q]

∑
v∈V(F )□

logmax{|α|v, 1},

h(α)
def
= hnon(α) + harc(α)

and refer to h(α) as the Weil height of α.

Observe: Let n ∈ Q be a positive integer. Then we have

hnon(n) = 0, harc(n) = log(n).
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In this work, we introduce a variant of the notion of the Weil height.

Definition

Let α ∈ F×. Then for □ ∈ {non, arc}, we shall write

htor□ (α)
def
= 1

2[F :Q]

∑
v∈V(F )□

logmax{|α|v, |α|−1
v },

htor(α)
def
= htornon(α) + htorarc(α)

and refer to htor(α) as the toric height of α.

Observe: Let n ∈ Q be a positive integer. Then we have

hnon(n) = 1
2 log(n), harc(n) = 1

2 log(n).
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Remark

For α ∈ F×, it holds that h(α) = htor(α).

Definition

A number field F is mono-complex
def⇔ ♯V(F )arc = 1

(⇔ F is either Q or an imaginary quadratic number field)

Proposition (Important property of htor□ )

F : a mono-complex number field

For α ∈ F×, it holds that htorarc(α) ≤ htornon(α).

Proof: This follows immediately from the product formula.
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Next, we introduce the notion of the “height” of an elliptic curve.

Definition

F ⊆ Q: a number field

E: an elliptic curve /F
∼→Q “y2 = x(x− 1)(x− λ)” (λ ∈ Q \ {0, 1})

Note: S3
∃ ↷ (PQ \ {0, 1,∞})(Q)

∼→ Q \ {0, 1}

For □ ∈ {non, arc}, we shall write

hS-tor
□ (E)

def
=

∑
σ∈S3

htor□ (σ · λ),

hS-tor(E)
def
= hS-tor

non (E) + hS-tor
arc (E)

and refer to hS-tor(E) as the symmetrized toric height of E.
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Proposition (Important property of hS-tor
□ )

Suppose: Q(λ) is mono-complex

Then it holds that hS-tor
arc (E) ≤ hS-tor

non (E).

Proof: This follows immediately from the previous Proposition.

Now we note that we have an equality “deg(qλ) = hnon(j(Eλ))”.

Theorem (Comparison between hS-tor
□ (E) and h□(j(E)))

We have

0 ≤ hS-tor
non (E)− hnon(j(E)) ≤ 8 log 2,

−11 log 2 ≤ hS-tor
arc (E)− harc(j(E)) ≤ 2 log 2.
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Auxiliary numerical results

Theorem (j-invariants of “arithmetic” elliptic curves — due to Sijsling)

j(“arithmetic” elliptic curve over a field of char. zero) ∈

{488095744
125 , 1556068

81 , 1728, 0}.

Theorem (Effective ver. of PNT — due to Axler, Rosser-Schoenfeld)

For x ∈ R≥2, write

π(x)
def
= ♯{p ∈ Primes | p ≤ x}; θ(x)

def
=

∑
p∈Primes; p≤x

log(p).

Then for any real number x ≥ 5 · 1020 (resp. ≥ 1015), it holds that

π(x) ≤ 1.022 · x
log(x) (resp. |θ(x)− x| ≤ 0.00071 · x).

Arata Minamide (RIMS, Kyoto University) Explicits Estimates in IUTch September 7, 2021 32 / 34



Auxiliary numerical results

Theorem (j-invariants of “arithmetic” elliptic curves — due to Sijsling)

j(“arithmetic” elliptic curve over a field of char. zero) ∈

{488095744
125 , 1556068

81 , 1728, 0}.

Theorem (Effective ver. of PNT — due to Axler, Rosser-Schoenfeld)

For x ∈ R≥2, write

π(x)
def
= ♯{p ∈ Primes | p ≤ x}; θ(x)

def
=

∑
p∈Primes; p≤x

log(p).

Then for any real number x ≥ 5 · 1020 (resp. ≥ 1015), it holds that

π(x) ≤ 1.022 · x
log(x) (resp. |θ(x)− x| ≤ 0.00071 · x).

Arata Minamide (RIMS, Kyoto University) Explicits Estimates in IUTch September 7, 2021 32 / 34



Main Results

Theorem (Effective ABC for mono-complex number fields)

Let d ∈ {1, 2}, ϵ ∈ R>0 ∩ R≤1. Write

hd(ϵ)
def
=

{
3.4 · 1030 · ϵ−166/81 (d = 1)

6 · 1031 · ϵ−174/85 (d = 2).

Then for

• F : a mono-complex number field — where d = [F : Q]

• (a, b, c) : a triple of elements ∈ F× — where a+ b+ c = 0

we have

HF (a, b, c) < 25d/2 · exp(d4 · hd(ϵ)) · (∆F · radF (a, b, c))
3
2+ϵ.
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Theorem (Effective version of a conjecture of Szpiro)

Let ϵ ∈ R>0 ∩ R≤1; a, b, c be nonzero coprime integers such that

a+ b+ c = 0.

Then we have

|abc| ≤ 24 · exp(1.7 · 1030 · ϵ−166/81) · (rad(abc))3(1+ϵ).

Corollary (Application to Fermat’s Last Theorem)

Let p > 3.35 · 109 be a prime number. Then there does not exist

any triple (x, y, z) of positive integers such that

xp + yp = zp

holds (cf. [Coppersmith], [Mihăilescu]).
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